amani alshoaibi مشرفـة عـامـة
الكــلــيــة : كليه الهندسه والعماره القسم ( التخصص ) : عماره السنة الدراسية (المستوى الدراسي) : ....... الجنس : عدد الرسائل : 10090 العمر : 34 الدوله : اليمن العمل/الترفيه : طالبه جامعيه المزاج : اعيش لاجلك نقاط : 11874 تاريخ التسجيل : 17/04/2010 : :قائمة الأوسمة : :
بطاقة الشخصية التقييم: 10
| موضوع: معادلات في هندسة المساحة الأحد أكتوبر 03, 2010 2:55 am | |
| مرحبا بكم مرة اخري في موضوع اخر وهو معادلات مهمة في هندسة المساحة وهي منقولة من الموقع للفائدة المعادلة الاولي Transformations" IntroductionIn our work, it may sometimes be necessary to transform a set of co-ordinates from one cartesian system to another. The following formulae may be used to transform a set of (e, n) co-ordinates into a set of (e', n') co-ordinates.ScaleA simple scale change, for example changing feet to metres or applying a meteorological scale factor, may be applied thus:e' = k e n' = k n where e, n = original (old) co-ordinates: k = scale factor: e', n' = new co-ordinates RotationFor a rotation of axis about an angle θ, which may be given or derived from known co-ordinates in both systems:e' = e cos θ - n sin θ n' = e sin θ + n cos θ where e',n' = new co-ordinates: e, n = original co-ordinates: θ = angle of rotation TranslationFor a change of origin by factors E and N:e' = e + E n' = n + N where e',n' = new co-ordinates: e, n = original co-ordinates: E & N = shift factors Scale, Rotation and TranslationIf the transformation parameters are known (i) e' = k (e cos θ) - k (n sin θ) + E (ii) n' = k (e sin θ) + k (n cos θ) + N These formulae work for all cases. If no scale factor is required, substitute k = 1.If no rotation is needed then substitute θ = 0.Similarly, if no Translations are required E & N = 0 as required.If the transformation parameters are NOT known In this case, two points in each system must be known (preferably as far apart as possible).The following parameters may be calculated:Scale Factork = (Distance between 2 points in new system) / (Distance between 2 points in old system) Rotation Angleθ = (Bearing between 2 points in new system) - (Bearing between same 2 points in old system) TranslationIf (e, n) = 1 point in old co-ordinate system and (e', n') = same point in new system:E = e' - k (e cos θ) + k (n sin θ)N = n' - k (e sin θ) - k (n cos θ) | |
|